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A NEW THEORY OF WORKHARDENING

D. Kuhlmann-Wilsdorf
School of Metallurgical Engineering
University of Pennsylvania
Philadelphia, Pennsylvania

Abstract

The experimental evidence on the mechanical behavior of fcc, bcc
and hcp metals is briefly reviewed. Extended linear hardening, largely
independent of temperature, strain rate and other testing conditions, is
found not only in all fcc metals (stage II) and in germanium but also in
polycrystalline iron and simple steels. The average value of X = G/OII
(shear modulus by work hardening coefficient in the linear range) is about
300 in fcc metals and 500 in steels. The corresponding value for hcp metals
is by far larger, and it is concluded that the linear hardening in them
cannot be compared to that in fcc and bcc metals.

A qualitative theory of easy glide is presented. Linear hardening
in stage II is explained on the basis of three simple assumptions. The
resultant theory is applicable to a great variety of materials, testing
conditions and dislocation arrangements, and in particular also to the
tangled dislocation structures which are believed to be due to interactions
between point defects and dislocations. The expected rate at which energy
is stored during glide, as well as slip line lengths, dislocation density,
the role of intersection jogs and the Cottrell-Stokes law are discussed in
the light of the theory, and good agreement with experimental fact is found.

The lower rate of linear work hardening in steels compared to that




in foc metals is explained through the actien of easy cross slip. A
quite similar work hardening rate is occasionally ebserved in a lirear range
of stage III in pure foc metals when, again, easy cross slip is believed to
operate. Climb and ‘conservative climb'ef dislocations can acceunt for the
remaining ebservations regarding stage 1II.
nt and Brief Surv ntel E ce

The stress-strain curve of crystals of (many different substances
are qualitatively similar. No significant permanent plastic deformation takes
place belew the sé-called "critical resolved shear stress”, As the applied
stress is raised beyond this level, yielding occurs with little or no work-
hardening and sometimes even accompanied by a drop in stress. This stage is
usually called the “easy glide” region, or “stage I”. Straining beyend easy
glide leads via a brief transition stage of rapdily increasing work hardening
inte “stage 1I”, in which the work hardening coefficient is a censtant, i.e.
in which stress and strain are linearly related; also called the ”linear
hardening” range. Pinaliy, in stage III, the workhardening coefficient
diminishes again.

The above type of workhardening curve (Fig. 1) and in particular
the range of linear workhardening in stage II has !;un the subject of
numerous experimental as well as theoretical investigatiens, mainly in cone

nectien with pure foc metals 1-16 , but it is also found in fco alleys 17.22

23-25 26.20, and

and, occasienally, in hexagonal metals o lonic corystals
germaniwm 29, plus probably quite a many other substances.
Polycrystals do not usually exhibit easy glide, but a linear
workhardening range comparable te stage II of foc single crystals is often
‘alse found in them. Actually, the numerical value of en. the workhardening

1
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coefficient for single crystals in stage II, although varying by about the
factor 2 for different orientations of the same material 4,8,7,9, 30,31' is
otherwise amasingly stable. In particular, 61 apparently depends on the
tm;atun only in the same way as the modulus of rigidity, G, so that

G/Opy = K is very nearly a constant ©¢7:9:29,30,32-38 oy, 410 o, 1s

almost independent of rate of straining 29933 and compositien of foc alloys,
except that it mostly seems to decrease somewhat with increasing alloying
content (see for example refs. 5 and 21).

Investigations of linsar hardening in bec as well as fcc poly-
crystals shows that also their hardening coefficient is very reproducible,
being little affected by temperature of testing >°, speed of testing %,
composition 35‘36, prestrain 37, and grain size 38, There is even adequate
numerical agreement between X = ©7y/G measured for single crystals, and the
value which one wuld deduce from the linear hardening range in polycrystals
when converting the tensile streas and strain into shear stress and strain,
&coordinq to some average orientation. For example, the linear hardening in
pelycrystalline brass is found hotwicn 50 ky/me? and 60 ky/mn? tensile stress
per 100% tensile strain. Since, for fcc metals, an average value for the
conversion of tensile stress into shear stress, as well as of tensile strain
inte shear strain is 0.4 (see reference 39} one would obtain from the poly-
crystal curves the single crystal value 8;; & 5§ x (0.4)2 ky/me? % 9 kg/mm?,
which is consistent with the measurements of von G8ler and Sachs 18 .

In stark constrast to the discussed persistence of rapid linear
hardening under a very wide variety of circumstances, "easy glide”, not

usually found in polycrystals, is so sensitive to many influences that it is
" .
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often missed altegether. In fact, even small amounts of insoluble impurities
erase it in nominally ”"pure” fco metals, as was first recognimed by Rusi §
(see for example 2, 16, and 40). This is believed to be the reason why,
in "pure” foc metals, easy glide has been missed for many years “, even in
the eoixru of otherwise very careful investigations as for exarmple the early
study by Kamop and Sachs 41 on glide in aluminum, and why easy glide has
only been recognized as a general phenomenon in fcc metals since very pure
métals have become available. In fcoc solid solution alloys, on the other
hand, easy glide has been known a long time, because its extent is greatly
increased by the presence of soluble additions.

Fasy glide i= further dependent on specimen size 31"2, decreasing
with increasing orystal diameter, and it may be influenced by surface treat-
ments as vell as clamping conditions (see 11 and 43). It is pronounced at
low temperatures, but decreases with increasing temperature 6,16, 29,32,.34'
and may vanish altogether at elevated temperatures. Above all, homorx. eagy
glide is prominent only for cx;yltaln oriented such that extensive single
glide is to be expected, i.e. in crystals near the center qf the standard
triangle and towards the {110) corner, while crystals with their axis near
<111> and <100> s'how little or no easy glide 2,4,

Actually, also stage I represents a range of linear hardening,
but with a much smaller work hardening coefficient which, moreover, is
strongly orientation dependent, increasing sharply towards £100> and <111>
orientations.

The beginning of stage III as well as workhardening in this range
are strongly temperature dependent. Stage III is usually thought to be

caused by ”"dynamical recovery”.
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The yield stress of previously undeformed crystals is probably
governed by their resistance ageainst dislecation motien. This resistance
is partly due to the so-called Poiorll-!hl":arro force, usually modified by
the wadertainty of dislocation axes 44+45, {4 due to impurity and point
defect lecking of various types, to the resistance against the intersection
of "forest” dislocations, the drag of the resultant intersection jogs, and/er
due to the interaction between the glide dislocations and any other type
of defect, plus the stress necessary to bow the free dislocation lengths eut
against the reaction of their line tension. But whatever may be the dominant
effects, glide under the action of a slowly 1ncroaci.nq streus cannot start
unifomly throughout the crystal. Greater -or lesser deviations from the
calculated level of applied stress, as well as availability of dislocations,
and local fluctuations of the total resistance to dislocatien motion, must
result in the initiation of plastic flow in certain areas while the rest of
the material is still undeformed.

It a significant part of the initial flow stress is due to impurity
or point defect locking, or if it is heightened by short or leng range

ordering 46-48

. the dislocations which move first will experience a frictional
stress which drops initially. In ether cases the flow strees opposing the
motion of the moving dislocations may rise slowly, but it is luqqoltod\l\hﬂ
that only little hardening can take place until the crystal is filled with
dislocations to the point that those moving in different directions (even
though maybe on the same slip plane) mutually begin to block their paths,

i.e. until there is no -ubctantialh region of the test length left in which

no plastic deformation has taken place.

Sometimes, the lack of homogeneity in the early stages of deformation®
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the spread of dislocations into still undeformed regions, takes & very

obvidus forn, as for example in the case of Liiders bands in iren or a-brass

49
/
80, 51

or the spread of ordinary slip bands in ionic crystals o or Liders

bands observed in irradiated copper L In agreement with the above
suggestion that rapid hardening begins only when the specimen is filled with
dislocations, "easy glide” in such cases apparently is terminated when the
test length has been traversed by Luder’s bands or is covered by slip lines,
It is thus logical to correlate the easy glide region in general with slip
taking piace up to the point that the specimen has just attained a quasi-
uniform dislocation distribution, before dislocations emanating from
different c«\tors)in which the yield stress was first oxcoedcd'havo begun
mutually to block their progress.
Work Hardening in Stage I
Positive wor&hardcninq in stage I partly reflects the nonuniformity

of the applied stress., If, due to grip effects for example, the applied
force results in wide local atress fluctuations, yielding will first occur
at stress peaks, where the yield stress is exceeded before the bulk of the
material yields. The firast regions to yield then workharden, and increasing
proportions of the spec_inien are being stressed beyond the yield point. It

is in general agreement with this type of geometrical hardening theory that

54 san explain the orientation dependence of easy glide

Hauser and Jackson
through grip effects.

In addition to the above effect, however, some true workhardening
in easy glide of fcc motale)oven under the most careful testing conditions,

seems to take place. The lowest stress which will cause sustained motion
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of a dislecation in fco metals at low and intermediate temperatures
apparently rises continuously with the distance traversed already. .If this
was not so one could expect crystals to shear on individual planes; in ex-
treme cases to fracture. Also one oould not understand the temperature
dependence of the workhardening rate in easy glide.

One theoretical reason for a true positive workhardening coefficient

55 $ As a dislocation moves

in easy glide was f£irst given by van Bueren
.and interseocts forest dislocations it acquires jogs which caunse a drag on
the dislocation line. 1In 1doa1' single glide, the m.mbor of jogs formed is
proportional to the area swept out by dislocation axes, which 1;\ turn is
proportional to the shear deformation. Hence the resulting rate of work
hardening depends on the relation between dislocation density and shear.
If "unpredicted” slip takes place during easy glide, the density of forest
dislocations increases with etra.in'. ¢giving rise to additienal hardening. In-
terference of primary slip, by slip on secondary systems was investigated
theoretically by Haasen and Leibfried 56,57 who accounted for the orientation
dependence of the rate of workhardening in this. way.

Anether source of true workhardening in easy glide i{s that peint
dofocfl are generated which interact with the dislocations to form tan-qlu,
and {n this way hlﬂdor their progress 45 « Pinally, ”"jogs” are created
through the uncertainty of disloocation axes 45. which nqgin cause a drag
on the dislocations. |

Although at this point ne cuantitative theory of workhardening during
easy glide san be given, it seems safe to state (i) that the mechanisms
mentioned above must operate ({i) that the linear hardening during easy

qlide)which is observed experimentally, is at least partly caused by them,




and (41i1) that these mechanisms should continue to operate even after

stage II hardening has cosmenced. The three processes discussed are all

temperature dependent and would contribute to 'C'.. in Seeger’s teminology
On _the Extent of Easy Glide

The dislocation density is always dot;minod by the effective stress
driving the dislocations forward, i,e. by the difference between applied
stress and .true frictional stress acting on the dislocations; but the shear
m is equal to the product of Burgers vector, dislocation density,
and mean free path. Since, for a btm material, the effective stress durinq'
easy glide is clearly little dependent on straining conditions, the observed
wide variations in the extent of easy glide, due to surface treatments,
crystal orientation, temperature etc. must be due to correspondingly wide-
variations in the mean free dislocation path before stage II begins.

In the light of the prooodinq considerations, the main body of
cxporimntal evidence on the extent of easy glide becomes qualitatively under-
standable: Easy glide is temminated the earlier, the shorter the mean dis-
location paths are. In orientations close to the symmetry line, or <11l1)
or <100> , in particular, slip will start practically simultaneously on
intersecting systems, and dislocations migrating outward from different
plastic regions will interact and block each others progress after very short
free paths. Consequently, short easy glide near 100>, <111) , and
orientations near the symmetry line of the standard trian¢le, is to be
expected. The effect of insoluble impurities can also be understood on the '
basis of this ooncept, since dislocations will be held up by them and will

rapidly multiply with correspondingly small mean dislocation paths.

11,12
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Soluble impurities, by contrast, lower the stacking fault energy
and give rise to dislocation locking as well as incressed initiasl flow
stress due to ordering phenemena. All of these effects, directly " or
indirectly 45. cause the dislocations which travel outward from regions
in which the yield stress is first exceeded to move long distances, i.e.
cause long easy glide.

Specimens oriented for single slip and subject to bending stresses
superimposed on tension will start to yield at the most highly stressed
surfaces, causing dislocations on the same system.snd with the same
Burgers vector to move towards the interior of the specimen. Altheugh
dislocations of the same slip system moving in the same direction interact

58,59

slightly, mainly in the form of "glide polygonization” s they will

not block each others motion as long as there is no strong obstacle in
the path of the leading dislocations. Hence, the plastic regions spread
from the surfaces inward and very long esasy glide for this case 1s
expected.

This effect 1s probably the explanation for the size effect (see
also the discussion by Fleisher 16), as well as for the vary low work
hardening observed by Rohm and Kochendorfer 49) when-shearing long single
crystals of aluminum,

The absence of easy glide {n pélycrystals, except in cases where
the onset of dislocation motion is coupled with a substantial drop in stress,
as for example in iron, is in the firet place a consequence of nonuniform stress
distribution, since the resolved shear stress acting on the moit fyvorably '
oriented slip systems in the different crystals varies widely. In addition,

¢

multiple slip begins very early in all crystallites of a pelycrystal. In
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agreement with this thought is the long-known fact that the stress-strain

curves of fcc polycrystals can be understood from the superimposition of
the shear stress-shear strain curves of randomly oriented single crystals ‘1'61'62.
'.fho influence of tenperature on the extent of easy glide in pure
foc metals could not be understood until very recently. Now, however, it has
been shown that dislocations in pure fco metals "tangle” due to their inter-
action with point defects, in a process which has been named “mishrooming”, 63,64.
It conunists of a combinutién of glide and climb mechanisms, causing oriqinqlly
smooth glide dislocations to form irregular three-dimensional tangles. The
dimensions of average tangles normal to the slip plane increase with increasing
tenperature. At very low temperatures “mushrooming” as such virtually ceases,
although the "uncertainty of dislocation axes” still causes seme slight move-
ment of dislocations normal to their slip planes, even at liquid heliwm
tcuporaturo"s. The result of these processes is that the same amount of
glide causes much more voluminous dislocation tangles at high than at low
temperatures, and the slip which takes place until a quasi{-uniform dislocation
distribution is reached, at the end of easy glide, is consequently decreasing
with increasing temperature.
It follows from the preceding arguments, and should be stressed,
that the end of easy glide is not caused by the onset of secendary slip, as
was first euggested by Rolm and Diehl ©5 , and has since been widely accepted.
True, thc onset of secondary glide will cause easy glide to end after only
small additional shear, but easy glide will always stop when -lip'has spread
quasi-uniformly through the material, whether or not secondary or unpredicted

slip has speeded this process.
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Experimental Evidence en Rapid Linear Hardening

Accerding to the preceding arguments, the only feature common

to all materials at the start of rapid linear hardening is that dislecations
have been generated and been distributed throughout the specimens to form

a quasi-uniform dislocatien density. The actual dislocation arrangesents

at the onset of stage iI, however, are widely different for different
materials and testing conditions, as is bu;un from experimental evidence.
ForAexamlo. pure fcc metals after deformation up fo the start of stage II
exhibit irregular dislocation tangles when tho. deformation took pla'co at
intermediate temperatures, but show little tangling and, instead, a profusien
of long drawn-out prismatic loops when deformed at vory'low‘tmraturu _‘5.
If "easy glide” - at a much higher stress level - took place after quenching
or irradiation, the same metals show dense tangles, mostly aligned along
active slip planes 64 1n fec alloys of the a-brass type, by contrast, the
dislocations are found in the form of sequences of pile-ups, held up behind
obstacles 66-68 » often represented by dislocations with different Burgers
vectors. Qualitatively as well as quantitatively the latter disleocation

67'69{ Moreover, in

arrangement agrees quite well with an earlier theory
single crystals, slip up to the start of linear hardening is caused u;-tly
by single glide, but in polycrystals mich multiple slip must have taken
place before linear hardening cormences.

In spite of these wide variations in the dislocatien arrangements,
Bn, the numerical value of the workhardening coefficient of stage II, is
amazingly uniform. According to present best knowledge, all foc single as
well as polycrystals, even germanium, under any type of circumstances,
exhibit a value of 'Glen = K, where G is the modulus of rigidity, between

L)
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about 150 and several hundred, say, 6/6r = K 2 300 in average, within the
factor 2 both ways. .

Even more astounding are the results on steels, ascumulated by
MacGregor and his group 35-37,70 uhich have been partly referred to already.
From these it appears that a linear workhardening coefficient in tension is
found for steels, which is persistent againat every type of pretreatment or
variation in testing conditions which have been tried. PFor practically all
tests made and al) steeis investigated this workhardening coefficient equals
65 kg/mm tensile stress per unit tensile strain within a factor of less than
2 either way.

This is particularly surprising since large iron crystals show no
range of rapid linear workhardening at all. The reason for this seems to be
that one Luders band after the other passes t.hrouqh the specimens, and no
quasi-uniform state of dislocation dhtr!.buti;m is ever esteblilh;d.

Unfortunately, wuch less theoreticel work has been done on the
geometry of slip in bcc metals than is availeble for fcc metals. Therefore
it is difficult to say what conversion factor should be used to transform
the measured linear workhardening coefficient in tension inte one correspending
to our en. However, in view of the multitude ;)f slip planes as well as
Burgers vectors available (assuming that in bee polycrystals not enly 1/2 <111
but also <100> act as Burgers vectors) oneshould think that the conversion
factor from tensile stress to shear stress as well as from tensile strain
to shear strain should be somewhat larger than the value O.4 taken above
for fcc metals, and be closer to the limiting value of 0.5. With the
latter value, and with G = 8000 kg/mm? one obtains X = G/eqq "80q65’(0.5)z' 800,
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a value somewhat above the average but still within the limits previously
given for foo metals. ‘

The workhardening coefficient of crystals of hexagonal metals, on
the other hand, is substantially smaller, amounting to about 0.7 hqlunz for
gzinc at room temperature. This means that the previously introduced parameter,
X, giving the ratio of workhardening coefficient to modulus of rigidity,
would amount to several thousand. Moreover, a; is also the case for iron,
the polycrystal workhardening curve for hcp metals cannot be do'rivod from those
of the single crystals. It is therefore submitted that the linear range of
workhardening sometimes found in hop metal crystals is not cawparable to
stage I1 hardening in fcc metals. The reason for this may be that no quasi-
uniform distribution of dislocations (which we believe is the prerequisite
for stage II hardening)was established in the single crystalline hep metal
specimens investigated so far. This could ultimately be a consequence of the
lack of interpenetrating ll}p systeas., .

Theory of Linear Hardening

Frem the foregoing it is evident that a general theory of stage II
hardening should not depend on the magnitude of the Peierls stress, or of
the stacking fault energy, nor on the presence of dislocation pile-ups, nor
on the ocourrence of multiple slip, since none of these factors seem specifically
to influence the value of 6;;/G. It is also plain that leng-range internal
stresses cannot be responsible, because only an insignificant proportion of
the plastic strain is removed on unloading. It is therefore attempted to
base the theory of stage 1II hardening on no assumption, except that during

linear hardening a quasi-uniform dislocation pattern exists which changes
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in its dimensions but remains clnil'ar to itself; may it consist of pile-
ups or tangles or whatevert > :

Once the material is filled with dislocations, at the end of uay‘
glide, 2l factors named before to determine the frictional resistance
against dislocation motion remain in action much the same ss in stage I,
namely at about the level of the stress during easy glide. By contrast,
the reaction of the dislocations against bou.ing out, which is due to their
line tension, and which shall be designated by the symbol T‘ s 18 greatly
affected. The reason for this is that the dislocations now start to hinder
each others motion, mutually blocking or anchoring or pinning on parts,
and leaving only segments of aver:z:s Jength Z free to move coherently.
The stress required (over and above the total frictional stress due to all
other causes) to bow out a dislocation of length e beyond its critical

radius of curvature is about equal to Gb/c ,or
T, 2 Gb/TL i)

since it 18 the longest coherent dislocation lengths which are being
activated at any given moment.

In a quasi-uniform dislecation array of everage free lengths '2_ the
distance between nearest dislocations is CE, where ¢ is a number not far
from unity, say between 1 and 2. A leoop emitted from a particularly long
dislocation link will thus spread into a loop of radius cf before its
different segments meet other dislocations, and it will spread to an average

of rt =acl if only the fraction o of all dislocations are positioned

so that they could stop the spreading loop. A number dn of newly formed loops
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per unit volume will thus contribute a shear strain increment '

dy=dnbTr*=dnbT (el

Let, fusrther, the disldcation density in the arystal be given by,

Y’m/zz . (3)

where m is a small number, somewhat depending on the actual dislocation
distribution. In a regular three-dimensional network m is in the order of 3,
a little higher, say m = §, for a less regular arrangement. To this density
the new loops add, but not to the full extent of the loops’ cizemference.
Parts of the spreading loops encounter, and annihilate, dislocations of
opposite Burgesrs vector, and thus not only vanish themselves but in additien
eliminate those dislocation segments which were in their path. Other portions
may react with dislocations {n different system,particularly if multiple slip

takes place. As a result, dn newly formed loops per unit volume add

dgtd.nPZl're (4)

to the dislocation demsity, where B is a number between O and 1. It is then

. d,--2m45/23=21fpvtdn- 2TBexc Tdn (8

Using eq. (8) to express dn in termms of di yields

d.ns-mdf/‘n'(be(c@’ ()
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and by inserting this inte eq. (2) one obtains

dy»-mboccdl/3* |

Finally, with eq. (la) yielding

~dB/F % =T dr,/Gb (1b)

the oconnection between d'i and d'" is found as

da:(TmuC/Gp) d‘q | (8)

This expression gives the increase of that part of the lérou which is due
to the line tension of the dislocationg resisting the bowing-out of links,
with the increase of shear deformation. Here C is the modulus of rigidity
as before, while, to sum up, the other parameters were introduced as followss

M} connects the average free dislocation link length, E s With the
dislocation density, and is estimated at about S.

of ¢ is the reciprocal of the fraction of dislocations, encountered by
a apr;adinq loop, which are oriented so that they can stop its progress.

C ' 1s a constant linking the avesage distance between. dislocations on
the elip plane to their average free length. It probably has a value not
far from 3/2.

ﬁ is the extra dislecation length, expressed as a fraction of the

ciroumference of an average newly formed loop, which is added to the dis-

location ocontent of the crystal if one new loop spreads out.

»
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Since it is claimed that the increase in TG is by far the most
important contributien to workhardening in stage 1I, the workhardening
coefficient 1 will be close to dIt’dK o and the K factor, introduced
before as K = G/6;; is found as

K w'rrmc«/‘e = 8To/(32G/&y o

This result is most intriguing. Note in particular that K does
not depend on the Burgers vector. Therefors, within the lin.it. that a
pile-up of n dislocations can be regarded as one dislocation with a Burgers
vector of nefold strength, the above calculation can be applied to crystals
containing dislocation pile-ups, as for example a-brass, just as well as to
those oontaining tangles, say copper. The actual values of the parameters
nay vary somewhat from case to case.

In order to obtain a numerical value for K it is necessary to
1nvut1¢n.to the two important parameters a and B, all other parauton_ being
knewn within fairly narrow limits. s

Dislocations encountered by a spreading loop will enly block its
progress if they are faverably oriented. Mutually perpendicular dislocations
will net interact much, except that a certain stress is required for the
actual intersection (presumed to be small compared to tl) and that intersection
jogs are produced if the dislocations happen to have non-parallel Burgers
vectors. In first approxi.-ation) it s on'ly parallel or near-parallel dis.
locatiens which bleck mutually, and thus a may be taken as 1/3 for almost

randomly oriented disleeations, and probably closer te 1/2 if the dislocations
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are mainly parallel to their own slip planes.

Of those encounters which cause blocking, one half, in single
qlide. will be between dislocations of opposite sigh. These will not add
to the effective dislocation centént but in fact will reduce it. By how
much, in average, depends on detailed circumstances, in particular how
closely the two slip planes concerned are spaced and whether cross slip
and climb takes place or not. In stage II thgggigz;co-lou do not operate
over appreciable distances, and the net reduction of effective* dislocation
length due to encounters between a part of a spreading loop and dislocations
of opposite sign may be estimated by assuming that one half of the encounters
with opposite Burgers vectors will not give any net change and one half will
remove an equal length. Loop parts which encounter lislocations of like
sign are assumed to be simply held up.

All in all, then, one half of an average loop will simply be blocked,
one quarter will react to form pairs of about the same blocking strength
as the dislocation originally present polloléod, and the last quarter will
meet a dislocation segments of opposite Burgers vector, leading to mutual
annihilation and the net removal of a dislocation length equal to one quarter
loop circumference. The parameter f will therefore be 3 =1/2 + 0 - 1/4 = 1/4,

With the above estimates of a = 3(for almost randomly oriented
dislocations, which is a good approximation for all cases in which dislocation

tangles are formed) and 8 = 1/4,the value of K finally becomes

K = 8W°</{5 = 300 (10)

¥ A palr of parallel dislocations of opposite sign has only a stress field
extending roughly to a radius equal to their distance of separation.
Therefore close palrs of opposite signs are no effective barriers for further
dislocations.
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Quite clearly, all parameters appearing in the calculation could
have been shifted somewhat one way or the other, and they have obviously
-been chosen so as to give numerical agreement with the experimental average
value of K = 300 for fcc metal,, which was quoted above. However, it
would be difficult to account for K smaller than, say, 100 or larger than,
say, 1000, Conversely, some flexibility is necessary since, in nature, K
is not a universal constant but dées vary more or less within those extreme
limits.

a u of a
1) EM.&MMWMMM

On superficial thought 1t appears as if the theory of mushrooming,
encompassing strongly temperature dependent processes, and the temperature
independence of stage II are mutually incompatible. This is not so, in
fact.

Present best evidence indicates that dislocation tangling operates
already ot the smcllest strains 43,71, In this process, even during single
glide, anchoring points are formed along the dislocation lines due to
interactions with point defects as well as due to "3jogs" formed through

64 the dislocation

dislocation "uncertainty” B, 1n- previous paper
behavior in mushrooming was considered qualit:tively, but, regardless of
detailed behavier patterns, essy glide will end only when a quasi-uniform
dislocation density within the specimen has been reached.

In stage II, in the presence of sdditienal streng pinning, the
dislecations bow out between adjscent pinning peints, just as discussed befere,

and, again, the stress difference between the applied resolved shesr stress and

the tetal frictionsl stress on the dislecations must be inversely proportional
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to the average length between adjoining pinning points. The only major
difference now is that the pinning points are only partly, and not exclusively
due to the mutual blocking action of the dislocations.
Let, then, the average free length between pinning points due to

the presence of other dislocations be denoted by the symbol Z', as before,
while the average distance between pinning points due to all other causes is

l. . Then there are, on a total le'nq‘th, L, of dislocation line, LI? and L/ eo
pinning points due to dislocations and due to other causes respectively. The
total number of pinning points on length L is thus L (1/[ + II.ZO), the average
free dislocation length becomes A = N./ (Z+ e"). and the stress necessary to

overcome the line tension of the longest free lengths is now

Ta

= Gb/arA (1c)

From here on there are no important differences between the con-
siderations given above to account for stage Il hardening and the present case
of additional pinning points: As long as Z. remains constant, workhardening in
stage 11 is again caused by the blocking of moving dislocations where they en-
counter near-parallel dislocation links, limiting the radius of the average
expanding loop to r¢ =a e 2— . and giving rise to the shear increment dl‘ =
dn b1 (ac l)z if dn expanding loops have formed per unit volume. Again,
just as before, the dislocation density is given by ?= mlé' 2 and, in the same
way as for normal stage II hardening, one obtains dx = . mbdcdz/pi 2 (eg. 7).

The corresponding increase in stress, however, is given by

dT= - (Gb/m) dA 1A% (1d)

- - —'z
but since, /A =1/ + 1/20 one obtains dA/A*=dl /T + dtblﬂf. As long
as Eo either remains constant, or remains proportional to Z it is dA/Az= al/t
2 - =2
. respectively dA /A= Bdf /¢ with B a proportionality constant. Hence,

dTA= B d'C‘ and dy = B (7 m a ¢/G 3) d'C‘, i.e. the workhardening coefficient

2

1]
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is not affected (beyond possible changes in the geometrical parameters) by
additional pinning points of constant density, and is only incoreased by the

2 o - - ’
factor B=1 + (leo) i%’. =1+ efif eote-ain- proportional ‘to { as { = o@o .

The above calculation applies :qually to all cases ;:f additional pinning, be
it due to mushroaming, precipitates, debris left by radiation d'unaqo, or any
other cause.

The above considerations can be put into different words and gen-

eralized as follows: The atress increase on a change of ) , the distance

between adjacent pinning points, is given as

- =2
dT, = - (Gb/m) dVX*= - (6b/w) (al/ €+ dljﬁf) = d{+ dTg (11)

where 'C¢= Gb/w€ and -C‘= (Gb/-rrt.+ const), i.e. it is simply the sum of the
stress inorease due to the change of Z alone and that due to the change of
e.. alone. Moreover, if the extra pinning points give way before the dislocation
can fully bow out between them, they only add to the overall frictional stress,
-C; in Seeger’s teminology 11'12. As long as Z; either remains constant or
rises linearly with the shear strain, linear workhardening in stage 11 will be
obcerved. The workhardening rate which follows from the increase in Tl alone
is 6y as derived above.
2) Stored Energy

If dn dislocation links per unit volume bow out to form loops, the
work thereby done on the specimen by the total applied stress, U, is

- - 2
dw‘:-TdX Tdnb'trr‘ (12)
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per unit volume. The work stored, per unit velume, is
dW, = dn (3 2T+, U (13)
where U is the energy per unit length of dislocation line. In first

z, but dropping scme-

what as the dislocation density increau-, say, to a lower value of U = szl'n.

approximation, for low dislocation.densities, U = Gb

With an average value of U =: szlz, and neglecting the frictional
stress on the dislocation by equating -C=t1= Gb/m A, the ratio of stored

energy to work input becomes
d.W,/o(\Jésva/c«'ﬂ' ¥ 20 f (14a)

Introducing G/6;; = K X3Mw/B = 300 from Eq. (10) above it remains

AW, [dw; >(1eT/K)(AE) > 16(A[E) % (145)
For"soft* metals, i.e. metals in which A = { and in which the
frj.ctional stress on the dislocations is small, up to about 1l6% of the energy
input is thus stored according to the present theory, less for others. So
farj the contribution made to stored energy by the generatien of point defects
has been neglected. If point defect generation and the frictional stress on
dislocations are also taken into aoccount, the value of dw'ldwi is slightly
reduced since point defect generation probably accounts for much but not all

of the frictional stress. The stored energy has also been overestimated for
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another reason: As the dislocation density increases, not only the line
r wut Len
energy for newly formed dislocations decreases, but the line mozvykof the

total dislocation content. All in all, then, we arrive at the result that
Lrece

only several[ and up to about ene sixth of the work done during plastic
deformatién is retained as stored energy. This is in agreement with
experimental evidence 72.

3) Mean Free Path and Slip Line Lengths

If the movement of several dislocations takes place cooperatively,
in particular {f pile-ups are formed, the workhardening rate in stage Il ‘s
about the same as for the independent motion of single dislecations, because
of the feature pointed out alyready, that the Burgers vector does not appear
in the expression for en. Hence, to the extent that pile-ups can be approximated
to super-dislocations, the theory remains almost unaffected. Average dislocation
paths, however, are then not a few times the distance between neighboring dis-
locations, but a few times that between neighboring pile-ups. At the same
time, the relative displacement of the two sides of a slip plane which is
caused by an expanding super-loep of pilod-up.dillocations is equal to the sum
of their Burgers vectors. Slip lines and slip bands will thus arise. Since
the workhardening rate is the same in either case one may understand why slip
bands and ”"elementary structure” 73'7‘, i.e. 8lip in the form of somewhat
coordinated and almost completely uncoordinated dislocation motion, so often
exists side by side in the same specimen.

In the framework of the present theory, the slip line length, i.e.

or pile- asthe case may be))
the final diameter of an expanding loe s given

A=2r'-_—2<xcﬁ*z TrG'nbozc;/‘Ce (18)
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The asterisks * have been used to direct the attention of the reader to the
fact that groups of n dislocations may move cooperatively, whose effective
Burgers veotor is b* = nb, and whose average free lengths Z* are connected

with 'Ce , the difference between the applied atrosslf and the frictional
>
stress, as Z;z Gb /W?

In first approximation, the frictional strees may be taken equal

to the stress level during easy glide, -Co . i.c.Tt r A -Ta » Since
experimentally, in stage II, T to + (G/X) (X-&") as indicated in Pig. 1,
and, therefore, TC 46/!(&-520@\@ obtains

AETKn b“C/(X"Xo) (16)

and with K=7Tmac/f = 300, a ¥8, ¢ ¥8/2and b~ 2.8 x 10°8 om this is

A;E“'/(X’Kc)]'lo-l'cm- (16a)
Experimental determinations of slip line lengths 9,53,75,76 do
indeed yield a relationship of the form A = A/( e XO ), with the proportionality
constant for copper found as A = 6 x 10-4 cm, plus minus 30%L or so. This
indicates (as also does much experimentsl evidence),that in copper no proper
plle-ups are formed, but that n is a number about $, -and presumably less in

o,

preminent lines cannot themselves have been due to the emission of just five

average since only the longer more prominent lines have been measured. ese

consecutive dislocations. Several or many, but not intimately connected

processes of loop formation must have taken place in close proximity. It

]




is suggested that the explanation for such repeated action is similar to
the one put forward in an earlier paper // , namely that the annihilation

of a link due to part of an expanding loop removes an obstacle for a
neighboring link to act, and so on.

In this same paper 77 measurements on the average length of
elementary lines in aluminum single crystals are quoted, together with the
resolved shear stress which had been applied. The product TA in these
measureaments is apparently a constant of averabo value TA = 11.6 x 104 en
dynes/cm?, This may be compared with the equation (15) above. 1f T, is
neglected in comparsion to‘ZZJ if n‘is taken equal to one,(sinco dislocations
in aluminum do not form obvious pilo-upq} 1£, further, the appropriate values
for G and b are inserted, and if ac and ¢ are again taken as 3 and 1.§
respectively, one obtains TA = 10.8 x 10% cn dynes/am®.

The close numerical agreement between the theoretical formula and
these old measurements is to some extent fortuitous, but it does strengthen
the oonfidence in the quoted measurements, and also provides a simple ex-

planation for elementary lines, namely extremely fine cracks formed in oxide

layers where single dislocations have moved. These would not tangle, as

45,63,64 | ause point defects which could in-

was pointed out repeatedly,
teract with them leave through the free surface.

4) Dislooation Density

-2
| ‘ The dislocation density in the present theory is given by ? = m/ ¢

with m about 5. With T T +T, ¥ T +Gb/¢ and T-Zo-(x-x,)G/K

this yields

eem [Ty bkl =5x10"(y-y)"  ara)

1
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ar ¢¥mLT @©-T.)/Gb]" (17b)

Although these expressions yield values of approximately right magnitude

for ? , 1t seems that the dependence of dislocation density on stress and
strain is mostly found differently, namely rising more slowly, 78'.1. Only
Bajiley and Hirsch 82 found a parabolic relationship of the predicted form

for POIYcryatullino silver, namely § & 0.6 x 10-5T" (equation (17b) ylelds
g 0.8%10 ('C’ .) for silvox). One of the reasons why measurements usually
give too low dislocation densities at higher strains probably lies in the fact,

mentioned already before, that the energy of unit length of dislocation line
drops with increasing dislocation density.

5) The Role of Intersection Jogs

When single crystals of pure fcc metals are strained, se that they
change from single slip to double glide within stage II, no break is observed
in the workhardening curve. In the framework of the present theory there
would be scope to account for differences of K between macroscopic single
and double glide, 1nesmuch as the parameters a or 3 or both could change.
However, there is ng*yriortprinciple to indicate in which direction the
change should go. The factor « should Le little changed by multiple slip
because a dislocation will be blocked in its progress if it counters another
one more or less parallel to itself, regardless of the direction of the
latters Burgers vector; either annihilating it, or reacting with it to give
a dislocation on a different slip plane, or just being blocked by it. The

parameter B, on the other hand, is affected in two opposing directions:
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Eneounters in which the two disloocatien segments annihilate altegether
become proportionately fewer in multiple glide, but encounters in whi:h the
dislocations get simply blocked also beceme fewer. Instead more dislocation
reactions take place in which one new dislocation is formed from two old ones.
All in all, the increase in [ because of the reduction in dislocation
annihilations would, for equal numbers of occurrences, more than counter-
balance the decrease due to fewer simple bleckings, but, in seocond
approximation, it must be borne in mind that mutually repulsive dislocations
on intersecting systems can bypass each other more readily than those on
parallel slip planes. Since thus it is not clear in which direction 611
should change, the conclusion is close at hand that the change cannot be
drastic.

Noneatheless, the dsence of any kink or discontinuity in the work-
hardening curve of pure feco metals to indicate the beginning of double glide
is somewhat surprising. After all, interseoction jogs must be formed, and
they are known to cause a drag on dislocations, (see for example 45, 83, 84).
5till, there are a few reasons which may account for this fact: (i) Like
single slip,at the beginning of plastic deformation, double glide in pure
fco metals does not start discontinuously. (ii) Mushroaning as well as the
uncertainty of dislocation axes cause a high density of "jogs” even in the
absence of intersecting dislocations, and also remove them in statistical
equilibrium 45 50 that there may be no permanent change in jog density.
(111) The frictional stress due to all causes, including the jogs caused by
mushrooming, is only in the order of Z'; , 1.e. usually small compared to the
stress at which double qli_de startl.' Therafore the extra hardening effect
of the intersection joq:,i';besunnbl;ialao cemparable to or smaller than 'Co 0

is smll campared to -CC .
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The conditions are quite different, though, for fcc alloys of the
a-brass type, as well as in pure fcc metals after quenching or irradiation 6‘.
In these cases, the primary dislocations are assembled into bands of high
density, parallel to the active slip planes. Dislocations on the secondary
system can break through these only with difficulty, resulting in over-

sheoting 18,52,59,85

In fcc alloys, moreover, no appreciable mushrooming
takes place, nor are many “jogs” formed or eliminated through dislocation
uncertainty. Therefore the resolved shear stress in a.brass does not drop
back to a much lower level once the second system has started to act, but the
intersection jogs have permanently raised the level of the flow stress. The
said difficulty for dislocations to intersect, as the main distinction between
a-brass type alloys, one the one hand, and pure fcc metals (whcre dislocations
intersect easily) on the other hand, was already pointed out and discussed

in an earlier paper 38,

6) The Proportionslity Between the Temperature Dependent and the Temperature
ndependent Part of the Flow Stress

In the recent literature much emphasis is put on experiments in

which a metal is strained under certain testing conditions and then abrupt
changes are made in temperature, speed of testing, or by repeatedly changing
between, say, simple extension to twisting so that intersecting slip systems

¢ Such experiments allew to determine what
fraction of the observed flow stress is due to temperature independent
procesases (our ’Ce ) and what fraction is due to thermally activated processes

( .C:S }, or they allow conclusions about the hardening due to intersecting

dislocations. The results indicate (i) that additional dislocation intersections

raise the flow stress in stage I by only a comparatively small amount,

g
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{i1) that the rate of stage II hardening is unaffected by changes in the
testing conditions once the specimen is strained beyond a certain transition
stage, (iii) that in stage II up to about 10% or 20% of the flow stress is
due to themnmally activated processes, and (iv) that the temperature dependent
part of the flow stress is linearly related to the whole flow stress, being
almost proportional to it, not only in stage II but also in stage III, in
single and in double glide and even after quenching 93, The proportionality
factor, linking the change in flow stress for a certain change in temperature
or speed of testing to the flow stress before the change, does depend on
temperature but not obviously on any other parameter. This experimental

fact is called the Cottrell-Stokes law.

While points (i) to (iii) above are clearly in agreement with the
present theory, point (iv) merits some discussion. A linear relationship of
the type found would not be surprising in stage 11, {f it i{s considered that
the temperature dependent processes which cause the linear hardening rate during
easy glide persist also in stages II and III, and the consequent linear increase
in Ts is superimposed on stage II hardening. This i{s consistent with the point
made in subsection 1) above, and is more or less the position taken in the
theories followed by Seeger, Haasen and coworkers.

Adams and Cottrell 87, on the other hand, expressed the view that
the dislocation arrangements stay similar to themselves, changing in acale
only, and that this accounts for the proportionality between ATand T .

90

Basinski . finally, stresses that AT and T are proportional

because both, fs and T, are due to the same cause, namely the intersection

(4
between glide dislocations and forest dislocations. The temperature independent
" part of the flow stress, in his view, is due to the elastic repulsion between

the intersecting dislocations as well as their partials, while the temperature
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depsndent part is due to the actual intersections.

The first of the three approaches has much to commend itself, but
it breaks down in stage III; as does the idea of Adams and Cottrell since in
stage III irregular tangles give way to a cell structure (see for example

)e The third theory has the defect that one cannot see how forest
dislocations can cause so much hardening, and,indeed,alternating tensile
and twisting experiments 11¢75:76:80 g5y that the contribution to hardness
due to intersecting disloecations in pure fcc metals is not large. Alsoc a
very strong orientation dependence of 611, and, presumably, a change in en
at the onset of double glide should be expected if “forest” hardening was
really the dominant factor in workhardening.

The objections to the three ideas previously offered depend on the
accuracy with which the Cottrell-Stokes law is obeyed even in stage III, and

Sor pure fee metals,

after quenching. Assunming thatJ\thoro is in fact no change at all in the
proportionality constant linking AU and T , during single as well as
multiple glide, in stage II, in stage III and after ‘qu‘uchinq)thon this must
be taken as clear evidence that the temperature dependent and temperature
independent parts of the flow stress are firstly more intimately connected
than assumed by Seeger, and, secondly, that dislocations on primary and
secondary systems cannot act materially differently, ruling out Basinski’s
approach.

In the framework of the present theory, the Cottrell-Stokes law
aan be understood for pure foc metals, and in a modified form also for bec
metals, These are the lubctanoeq! in which dislocations tangle profusely.

Here it is agreed thataside from cross slip and oclimb, which will be dis-
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cussed in connection with stage III, (i) thermal activation cannot materially
assist dislocations to break free from the obstacles presented by parallel
or near-parallel dislocation segments, which is the foundation of the theory
of stage II given in the present paper, and (ii) that dislocations which
have to be intersected make a contribution to the temperature dependent part
of the flow stress, (plus a small contribution to the temperature independent
part, which, however, shall be neglected).

As long as the dislocations form throo-dinensional tangles, made
up of almost randomly oriented sections, (which may be isolated, or spread

out along active slip planes,or may be assembled into cell walls), any segment

/J
of a spreading loop will meet roughly twice as many dislocations which are so
steeply inclined to it that they are intersected, than links which are so
nearly parallel that they block its progress. Hence, the temperature assisted
intersections are always in a fixed ratio to the temperature independent
blockinqa, {.e. the distance between intersections 15. always in a fixed ratio
to the mean dislocation length .é',,which detemines the tcmperatﬁro independent
part of the flow stress. This is true only to the extent that tangles or
cell walls can be taken to consist of randomly oriented dislocation sections,
but it remains true, in first approximation, even for multiple slip, and
thereby the Cottrell-Stokes law is explained.

An irregularity arises for small strains because there are other
contributions to -Z.u besides dislocation intersections, and the former are
the more prominent the lower the strain.

The transition regions which a;e observed in all experiments of

changing the testing conditions are not surprising: Firstly, the equilibrium
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distribution of jogs and of superjogs, due to dislocation intersections as

' to some extent
well as mushrooming and the uncertainty of dislocation axes 45 muIQASQpend
on crystal orientation, strain, strain rate and temperature. As a specimen
is unloaded, the momentary dynamical equilibrium of superjogs and jogs is
frozen in, but it reestablishes itself, though at a different level, after
a small additional deformation under the changed testing conditions. Secondly,
small rearrangements may take place even on unloading, and these are believed
to be at least partly rc-poniiblo for the so-called Haasen-Kelly effect 95,
Thirdly, some of the point defects generated during slip, and still unabsorbed,
diffuse to and/or along the dislocations to lock them during ageing experiments.
This last effect was shown to account for the recovery of damping and modulus
changes after deformation by Granato, Hikata and Lucke 96 and gives rise to
yield points after unloadinqbor ageing,or both 97'98.

Since the presence of dislocation tangles is held responsible for
the Cottrell-Stokes law, this should also hold in beec metals under such
conditions that tangles are formed, except that some complications arise
because presumably the Puierl--Nabarrqltre-a as well as Cottrell locking con-
tribute much more to -Z-, than they do in pure fcc metals. In a-brass type
alloys, on the other hand, no tangles are formed up to substantial strains
and, therefore, the Cottrell-Stok:l law should not be obeyed in thon. Pre-

99

liminary investigations on a-brass are in agreement with this conclusion .

Theoretical Considerations on Stage III Hardening
11,12

Following Ceeger’s theory the onset of stage III is usually
ascribed to the beginning of profuse cross aslip, facilitated by stress and
thermal activation. .

Obviously, cross slip must reduce the parameter B in the present
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theory, since some fraction of the dislocation segments which are held wp
at attracting parallel or near-parallel dislocations. can, by cross slip,
coalesce with these, and efther annihilate mutually or undergo a favorable
dislocation reaction. At the same time, the parameter o is increased by
cross slip because dislocation segments which would otherwise be held up by
dislocation links repelling them, can circumvent these obstacles through
croas slip.

Mader and Seeger 10 pave pointed out that the preferential elimination
of screw dislocations by cross 1ip explains the generidtion of deformation bands
in stage II1 which was observed by them. Although their model is ~very spocific,
and does not correspond to experimental fact, their reasoning can be adapted
to other dislocation arrangements.

As far as the theory of linear workhardening is concemed, no drastic
changes are anticipated through the action of cross slip. Linear workhardening
is expected to persist until or unless climb takes place, but the discussed
decrease of the parameter /a must lead to a corresponding decrease of the
workhardening coefficient, which gccordinq to eq. 9 {s given by 8 = (G/8w) B/a.

In this connection it may be significant that stagelIll sometimes
takes the form of a transition range, followed by almost linear hardoninqu
which then gives way to a curved final section with continuously decreasing
slope. The linear range in stage I1I was particularly noticed and investigated
by Haasen 13 Yho comments that, Oy11. the coefficient of workhardening in the
linear range of stage III, "depends on temperature in much the same manner” as

8175 the ratio of 6., : 6 being about 10 : 6 for nickel between 78°K

IT ITI
and 300°K, and a3 little smaller, i.e. QIII proportionately a little larger,

at very low temperatures.
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This result is most intriguing when taken together with th; evidence
presented in the early part of this paper that the value of K = G/eII for
fcc metals is about 300 while that dor%vod from polycrystalline iron and
simple steels is 500. The ratio of thle:nk‘uao';klmrdoninq rate in jetage-lH for
metals gliding with profuse cross slip (iron) to those gliding without
(fcc metals in stage II), hence, f:::ﬁ& same as the x;tiol of the workhardening
rate in the linear portions in stages III and II of fcc metals, namely 6 : 10.
From this it seems reasonable to conclude that the action of profuse cross
slip reduces the value of the parameter B/a to about 6/10 its value for glide
without cross slip, but does not otherwise affect the present theory of
workhardening very greatly. The theory of linear hardening is therefore also
applicable to bcc metals, and by inference to substances like AgCl which
show pronounced pencil glide, but with th*paramotor B/a taken as 0.6/(3 x 4) =
1/20, more or less. " |

Beyond the linear range of stage III, if it is present at all, the
workhardening rate drops further; down to zero in some cases. A reduction in
T e cagnct aq;Eunt for this, since 7:5 is usually small compared to the
flow at;:;ik~: begin with. The only obvious remaining cause for the further
reduced workhardening rate is dislocation climb*, respectively “conservative
climby’ 101, This, coupled with slip and cross slip, allows any arbitrary
dislocation motion, and thus allows the mutual annihilation of any type of

dislocations, with a consequent reduction of the workhardening rate. Only

this final part of the workhardening curve thus is due to “dynamical recovery”.

* Although, technically, mushrooming represents a type of climb it is not
roeferred to as such in the present paper, since it is better understood
as slip-induced precipitation of point defects 45,
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It seems perfectly possible that dislecation climb may begin to

operate extensively before cross slip. In that case no linear range is
expected to occur in stage III, Which of the two mechaniams, climb or cress
slip, begins to operate first, depends on several factors. In bcec metals
cross slip will almost invariably begin before climb, and the opposite is
true for hcp metals. In foc metals the ease of cross slip is primarily a
funotion of the stacking fault energy, as first pointed out by Schoeck and
Seeger 102, while climb is primarily a function of teating temperature relative
to the melting point. For this reason, care must be taken in experiments
designed to evaluate the stacking fault energy from the stress at which
stage III begins, since, sometimes, the onset of stage III indicates not the
beginning of cross slip but of climb.
Symmary

(1) Easy glide is explained as the range during which the specimen
is gradually filled with dislocations. Non-uniforn stress distribution in
this region may give the appearance of workhardening. The true workhardening
conponent in easy glide is primarily due to the accumulation on the dislocations
of jogs, and the interactions bot\ucn point defects and dislecations. The
resultant stress increase contributes te the temperature dependent part of
the flow stress, [,.

(11) Since the stress during easy glide does net change much, and
since it is this which determines the dislocation density, the extent of easy
glide is largely determined by the average path of the dislecations in this
firet stage. The dependence of the axtent of easy glide on orientation,
temperature, impurity content and alleying can be simply explained on this
basis.
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(i11) The end of easy glide is reached when a quasi-uniform
dislocation distribution has been established in the specimen. It is not
directly connected with the beginning of double glide, but double glide
leads to the drastic reduction of mean free dislocation paths, so that
the onset of nultiple slip causes easy glide to end after only small additional
strains,

(iv) Experimental evidence shows that the dislocation arrangements
during and after easy glide differ widely for different materials and testing
conditions, even for specimens which subsequently deform with linilar values
of K= GIGII, where G is the modulus of rigidity and 8;; is the workhardening
coefficient in stage I1I. It seems therefore futile to build theories of
stage 11 on models employing specific dislocation arrangements. Consequently,
a theory of stage II hardening is developed which rests on a few basic
principles only.

{v) Three fundamental assumptions are made. Firstly, that
during stage II a quasi-uniform dislocation distribution exists which remains
similar to itself and changes in scale only. Secondly, that the average
dislocation density 9 is connocted to E . the average length of the dis-
location segments which move coherently, as Q= nlzz. Thirdly, that
workhardening {n stage II is mainly the result of increasing dislocation
density and the resultant decrease in E . to which the temperature independent
part of the flow stress {s connected as TC‘EG'b/'ﬂ'é—.

(vi) Wéth the above three assumptions, the expression KﬂTmco&/Pim/P

is derived. 1In it)\is a geometrical factor not far from unity, and taken as

1.5, o i the reciprocal of the fraction of all encounters between parts of
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of expanding dislccation loops ard stationary dislocations which block their
further movement; and B is the fraction of the total length of a newly
expanding loop which remains trapped, adding to the dislocation content.

(vii) It is argued that only dislocationas which are nearly parallel
can block each others progress, ylelding X% . Purther it is deduced that
8 should be about 1/4, since certain loop parts will coalesce or almost coalesce
with dislocations of opposite -}gn, and thus not only vanish themselves but
in addition remove the dislocations which they encountered. As a result
K= G’GII becomes equal to about 100 7, in good agreement with ého value
observed for pursc fcc metals,

{viii) Since the expression for X does not contain the Burgers
vector, the theory is applicable to crystals in which the dislocations from
pile-ups, to the extent that the pilc-upc can be regarded as super dislocations.

(ix) Additional dislocation pinning adds to 'C; if it is
tenperature dependent, but does not change the value of K as long as the
pinning remains constant. I1f the number of additfional pinning points or their
strength depend linearly on the shear strain, the linear workhardening law
is still conserved, but with a changed value of eII. These results are
applicable to any kind of pinning, be it due to jogs, precipitates, point
defect or impurity locking, or “mushrooming”.

(x) The theory predicts that only up to about one sixth of the
work done on a specimen in the course of deformatien in stage II is retained
as stored enargy.

(xi) In stage II the average slip line length is found as
A 'i![n/(x -Xa)]x |0-"cm if Xdenotea the shear, Kc the shear at the

end of easy glide, and n the number of dislocations moving together in a
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pile-up. This agrees well with measurements on copper and aluminum if n

is taken equal to 5 and 1 respectively, and {s considered to be a satisfactory
result in view of the faot that direct observations in thin foils of pure

fooc metals have never revealed any'pmouncod dislocatien puo-\ipo.

(xii) The dislocation density in stage II is given by about
¢ 5~IO“(K _&.)z.

(xi14) It is difficult to decide in which direction 6, should be
changed through multiple slip, and {t is therefore concluded that the change
cannot be drastic. This is in agreement with experimental fact.

{xiv) The Cottrell-Stokes law is explained for all ocrystals which
form dislecation tangles composed of almost randomly oriented dislocation
segments. In such cases the moving disloocations encounter roughly twice
as many dislscations which they intersect as those which are almost parallel,
and bleck their progress. In other words, the density of “forest” dislocations
remains preportional to the total dislocation density, i{.e. the average
distance between forest dislocations remains proportional to the average
ooherently moving dislocation length l « Az long as the temperature independent
part of the flow atrus-C‘, is inversely proportional teo E ., with the same
proportionality factor, and as long as the temperature dependent part T is
mainly due to dislocation m& the Cottrell.Stokes law is obeyed.
whmonr\ the dislocations form tangles composed of almost randomly oriented
sogments; independent of whether the tangles fill the specimen almost \mlfomly)
or are aligned along slip planes,or form cell walls)or are distributed in
any other way.

(xv) Alloys of the a-brass type do not form tangles and should

therefore not obey the Cottrell-Stokes law. This law must alse break down
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in easy glide, when those temperature dependent contributions to 'Z" which

are not due to dislocation intersections become important while -tl becones

amall.
{(xvi) Transition effects upon the changing of testing conditions,
" on unloading and reloading, or intermediate ageing,can be accounted for.
(xvii) The profuse aperation of cross slip is believed to lower
the value of B/a, and with it the value of the workhardening coefficient,
by about 40%L, but to leave the linear law of workhardening in operation.
This conclusion is substantiated by the fact that the workhardening rate during
linear hardening of polycrystalline iron and steel, and that observed in the
linear phrt of stage III in nickel are about the same, namely 60% of the
value normally observed in ltade I1 for fcc pure metals.

(xviii) A further reduction of the workhardening rate in stage III
can be understood as the consequence of dislocation climb, respectively
“conservative climb”.
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Legend

Fig. 1 - Typical workhardening curve of fcc metals,
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